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Abstract: This paper focuses on suppressing spectral overlap for sub-band spectral

estimation, with which we can greatly decrease the computational complexity of existing

spectral estimation algorithms, such as nonlinear least squares spectral analysis and

non-quadratic regularized sparse representation. Firstly, our study shows that the nominal

ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when

filtering a finite-length sequence, because many meaningless zeros are used as samples

in convolution operations. Next, an extrapolation-based filtering strategy is proposed

to produce a series of estimates as the substitutions of the zeros and to recover the

suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a

linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are

applied to demonstrate the effectiveness of the proposed strategy.

Keywords: AR model; equiripple FIR filter; linear prediction; spectral estimation; spectral

overlap; sub-band decomposition

1. Introduction

As one of the most important tools, spectral estimation [1] has been extensively applied in radar, sonar

and control systems, in the economics, meteorology and astronomy fields, speech, audio, seismic and
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biomedical signal processing, and so on. In particular, sparse representation [2–4] opens an exciting new

vision for spectral analysis. However, such methods are usually accompanied by high computational

complexity, which makes their availability somewhat limited.

Sub-band decomposition-based spectral estimation (SDSE) [5] is an important research direction

in spectral estimation, because it has several advantageous features, e.g., computational complexity

decrease, model order reduction, spectral density whiteness, reduction of linear prediction error for

autoregressive (AR) estimation and the increment of both frequency spacing and local signal-to-noise

ratio (SNR) [6]. These features have been theoretically demonstrated under the hypothesis of the

ideal infinitely-sharp bandpass filter bank [7]. Subsequent studies [8–10] indicate that these benefits

aid complex frequency estimation in sub-bands, thereby enabling better estimation performance than

that achieved in full-band. In addition, the computational complexity of most algorithms for spectral

analysis has a superlinear relationship with the data size, and sub-band decomposition can considerably

speed up these algorithms. Independently handling each sub-band enables parallel processing, which

can further improve the computational efficiency. Both advantages are crucial for reducing the

computational burden, especially when analyzing multi-dimensional big data, such as polarimetric

and/or interferometric synthetic aperture radar images of large scenes.

Unfortunately, the ideal infinitely-sharp bandpass filter cannot be physically realized, and non-ideal

(realizable) filters introduce energy leakage and/or frequency aliasing phenomena [11]. Due to

these non-ideal frequency characteristics of analysis filters, spectral overlap between any two

contiguous sub-bands occurs during the sub-band decomposition. Then, the performance of SDSE

severely degrades.

In the relevant literature, several methods have been proposed to mitigate spectral overlap. We

classify these methods into three categories. The first category is defined as ideal frequency domain

filtering with a strict box-like spectrum, such as “ideal” Hilbert transform-based half-band filters [9]

and harmonic wavelet transform-based filters [12,13]. Theoretically, sub-band decomposition with

these filters is immune to spectral overlap. However, discrete Fourier transform will inevitably induce

spectral energy leakage, which can likewise distort sub-band decomposition. The second category is

known as convolution filtering with wavelet packet filters [8], Kaiser window-based prototype cosine

modulated filters, discrete cosine transform (DCT) IV filters [10] and Comb filters [6,14]. It seems that

increasing the filter order can improve the filtering performance and also the spectral overlap suppression

capability. However, in the context of involving a finite-length sequence and performing convolution

filtering, the nominal improvement of performance will lead to spectral energy leakage and inferior

filtering accuracy [10]. Considering the compromise between suppressing spectral overlap and reducing

spectral energy leakage, we have to restrict the filter order. The third category is frequency-selective

filtering, and a representative method is SELF-SVD (singular value decomposition-based method in a

selected frequency band) [15]. Essentially, SELF-SVD attempts to attenuate the interferences of the

out-of-band components by the post-multiplication with an orthogonal projection matrix. Unfortunately,

the attenuation is often insufficient when the out-of-band components are much stronger than the in-band

components or the SNR is relatively low. In this case, the estimation of the in-band frequencies is

seriously affected.
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In this paper, a new filtering strategy is proposed to suppress spectral overlap for sub-band spectral

estimation. First, we discuss the formation mechanism of spectral overlap. Nominally, a high-order finite

impulse response (FIR) filter usually has a powerful ability in spectral overlap suppression. However,

once we perform such a filter on a finite-length sequence with the convolution operation, the non-given

samples at the forward and backward sampling periods of the sequence are assumed to be zeros. A certain

filtering error therefore occurs and conversely disrupts the decomposed sub-bands. As a result, sub-band

spectral analysis severely suffers from the mutual overlap of adjacent sub-band spectra. Second, we

propose a filtering strategy to eliminate the filtering error and recover the suppression ability. This

strategy intuitively takes the place of the artificial zeros with some extrapolated samples. Toward the

problem of data extrapolation, many algorithms have been proposed based on various theories, such

as linear prediction [16], Gerchberg–Papoulis [17], Slepian series [18], linear canonical transform [19]

and sparse representation [20]. To establish an efficient method for the extrapolation in context and

to evaluate the effectiveness of the proposed strategy, we preliminarily develop a linearly-optimal

extrapolation based on the classical AR model identification and the Kalman prediction [21–23]. Third,

we derive the formulas to estimate the residual filtering error and adapt two common information criteria

with adaptive penalty terms for AR order determination. Moreover, equiripple FIR filters are applied as

analysis filters in coordination with the proposed filtering, because of their advantageous features [11].

Finally, the entire algorithm and the computational complexity are summarized. Some details, such as

the sub-band spectrum mosaicking procedure and parameter selection, are discussed in practice.

The remainder of the paper is organized as follows. In Section 2, the formation mechanism of spectral

overlap is discussed. Based on this, a steady-state Kalman predictor-based filtering strategy is developed

to suppress the overlapped spectra. In Section 3, the proposed filtering strategy is discussed for SDSE.

In Section 4, experimental results with several typical algorithms for spectral analysis demonstrate the

effectiveness of the proposed strategy. Finally, Section 5 concludes this paper.

2. Signal Filtering Based on AR Model Identification and Kalman Prediction

This section focuses on signal filtering. To reduce the filtering error induced by convolution filtering,

we propose an extrapolation-based filtering strategy and apply a steady-state Kalman predictor for

extrapolation. Two criteria with adaptive penalty terms for order determination are developed based

on the estimation of the residual filtering error.

2.1. Problem Statement of Signal Filtering

FIR filters are typical linear time-invariant (LTI) systems. According to the linear system theory,

the filter can be mathematically expressed as the convolution of its impulse response with the input.

Suppose that txnu is an input sequence and thnu is the impulse response of a causal FIR filter; the

filtered sequence tynu can be derived as [11]:

yn “ hn ˚ xn “

Nf´1ÿ

k“0

hkxn´k (1)
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where ˚ denotes the convolution operator and Nf is the filter length (i.e., the length of the impulse

response; the relationship between Nf and the filter order No can be written as Nf “ No ` 1).

Alternatively, taking discrete-time Fourier transforms (DTFT), we can represent Equation (1) in the

frequency domain as:

Y
`
ejω

˘
“ H

`
ejω

˘
X

`
ejω

˘
(2)

In addition, the filtered sequence length L, the input sequence length N and the filter length

Nf satisfy:

L “ N ` Nf ´ 1 “ N ` No (3)

Theoretically, given a large enough stop-band attenuation, spectral overlap can be thoroughly

suppressed. Moreover, the spectral estimation error in sub-bands can be neglected, as long as the width

of the transition band and the ripple of the passband are sufficiently small. Nonetheless, the pursuit of

excellent filtering performance substantially increases both the filter order and the length of the filtered

sequence (refer to Equation (3)). Such a high order is more likely to create error in part or even all of

the filtered samples. This result is contrary to our original objective, and the resultant filtering quality

is undesirable.

From the perspective of a discrete-time system, the output sequence of the convolution operation is

equivalent to the zero-state response of the filter system, because the initial state of every delay cell is

zero prior to the excitation of the input sequence. We take the example of the direct-type FIR system [24].

The value of the output sample at any time depends on all or part of the input samples and the system

state at that time. The first Nf ´ 1 output samples suffer from biases, because a part of the delay cells

do not yet become input-driven states; analogously, the last Nf ´ 1 output samples are invalid, because

a part of the delay cells restore the initial zero-states. Thus, the length of the valid part of the output

sequence, defined as Lv , satisfies:

Lv “ L ´ 2 pNf ´ 1q “ N ´ Nf ` 1 “ N ´ No (4)

Actually, if we rewrite Equation (1) in the following matrix form:

»
————–

y0

y1
...

yL´1

fi
ffiffiffiffifl

loooomoooon
y

“

»
————————————–

x0 0 ¨ ¨ ¨ 0

x1 x0
. . . 0

...
...

...

xN´1 xN´2
. . . x0

0 xN´1 x1

...
...

. . .
...

0 0 ¨ ¨ ¨ xN´1

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

loooooooooooooooooomoooooooooooooooooon
X

»
————–

h0

h1

...

hNo

fi
ffiffiffiffifl

looomooon
h

(5)

then we can find that the matrix X possesses many zero elements, which probably makes the outputs

y0, y1, . . . , yNo´1; yL´No
, yL´No`1, . . . , yL´1 not ideal. For example, y0 “ x0h0, while the ideal

output should be ỹ0 “ x0h0 ` x´1h1 ` x´2h2 ` ¨ ¨ ¨ ` x´No
hNo

. This means that the unknown

samples x´No
, x´No`1, ..., x´1 are assumed to be zeros. The filtering error of y0 is y0 ´ ỹ0 “

´ px´1h1 ` x´2h2 ` ¨ ¨ ¨ ` x´No
hNo

q. Likewise, the outputs y1, y2, ..., yNo´1; yL´No
, yL´No`1, ..., yL´1
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all suffer from errors under the zero assumption. Thus, we can conclude that the meaningless zeros are

the error sources of the filtering.

Referring to Equation (4), we note that, if the filter order is not less than the length of the input

sequence, the output samples are all invalid. Thus, improving filtering performance by means of

unlimited increasing filter order is meaningless.

In the next subsection, we will identify an efficient way to resolve this problem.

2.2. Filtering Procedure Based on Signal Extrapolation

The desired output of the filtering process should have two characteristics:

• The original and filtered sequences should be of equal length;

• During the filtering process, the states of the delay cells in the filter system should always maintain

input-driven states, i.e., there are no artificial zeros, but authentic samples in X.

As shown in Equation (5), the convolution filtering assumes the unknown samples

x´No
, x´No`1, ..., x´1; xN , xN`1, ..., xN`No´1 to be zeros, which leads to the filtering error. Thus,

an intuitive thought is to extrapolate the sequence txnu
pN´1q
pn“0q along two sides to provide a series of

estimates for the unknown samples. Taking place of the zeros in the matrix X with these estimates

can mitigate the filtering error. The input sequence is extrapolated along both sides, yielding two

extrapolated sequences, called Part A and Part B (see Figure 1). Suppose that LA and LB are the lengths

of Part A and Part B, respectively; then, those LA ` LB extrapolated samples are used to replace zeros

in X. According to Equation (3), the length of the associated output sequence is LA ` LB ` N ` No.

From Equation (4), the effective length of the output can be given by LA ` LB ` N ´ No. To satisfy the

requirement that the original and filtered sequence are of equal length, the extrapolated length can be

derived as:

LA ` LB ` N ´ No “ N ñ LA ` LB “ No (6)

0 20 40 60 80 100 120 140

−2

0

2

4
x 10

−3

index n

x(
n)

Original sequencePart A Part B

 

 

Extrapolated sequence
Original sequence

Figure 1. Original sequence and its extrapolated sequence.

Now, we can conclude that the extrapolated length should be equal to the filter order. We define LG

as the constant group delay of the filter. Between time No and time N ` No, the output samples are

valid. The output sample at time No ` n pn “ 1, 2, ¨ ¨ ¨ , Nq corresponds to the input sample at time



Sensors 2015, 15 115

No ´LG `n pn “ 1, 2, ¨ ¨ ¨ , Nq, because of the group delay. Consequently, the input sample before time

No ´LG is merely used as a training sequence of the system state. Thus, we can obtain the relationships:

#
LA “ No ´ LG

LB “ LG

(7)

Let x̂n and ŷn be the extrapolated sequence and associated filtered result, respectively. Then,

they satisfy: $
’&
’%

x̂n : LG ´ No ď n ď N ` LG ´ 1

hn : 0 ď n ď No

ŷn : LG ď n ď LG ` N ´ 1

(8)

x̂n “ xn p0 ď n ď N ´ 1q (9)

The filtering process can be rewritten in matrix form as:

ŷ “ X̂h (10)

where:

ŷ “ rŷLG
, ŷLG`1, . . . , ŷLG`N´1s

T

pNˆ1q (11)

and:

X̂ “

»
————–

x̂LG
x̂LG´1 ¨ ¨ ¨ x̂LG´No

x̂LG`1 x̂LG
¨ ¨ ¨ x̂LG´No`1

...
...

. . .
...

x̂LG`N´1 x̂LG`N´2 ¨ ¨ ¨ x̂LG`N´No´1

fi
ffiffiffiffifl

pNˆNfq

(12)

2.3. Signal Extrapolation Based on AR Identification and Kalman Prediction

According to the linear prediction theory [25], the AR model is an all-pole model, whose output

variable only linearly depends on its own previous values, that is,

$
&
%

Φ pq´1qxn “ εn

Φ pq´1q “
př

l“0

φlq
´l

, n “ 0, 1, ¨ ¨ ¨ , N ´ 1 (13)

where q´1 denotes the unit delay, p is the model order, φ0, φ1, . . ., φp denote the coefficients of the model

and φ0 “ 1. The sequence tεnu8
n“´8 is a white noise process, which satisfies:

$
’&
’%

E pεnq “ 0, @n

E pε2nq “ σ2, @n

E pεnεn1q “ 0, n ‰ n1

(14)

where E p¨q denotes the expectation operator.

We choose the forward-backward approach [1] as the coefficient estimator for AR model, for its

precision and robustness. Both criteria, including the Akaike information criterion (AIC) and Bayesian

information criterion (BIC) [26] can be applied to determine the model order; whereas both criteria
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sometimes suffer from overfitting. An alternative method of order determination will be discussed in

Section 2.4.

A linearly-optimal prediction for AR sequences is derived in [21–23] under the minimum mean square

error (MMSE) criterion. However, the prediction formula involves a polynomial long division and a

coefficient polynomial recursion [23], making the calculation of the prediction somewhat inconvenient.

Alternatively, the following steady-state Kalman predictor [27] provides an equivalent prediction with

the MMSE predictor, while offering a simpler formula to facilitate the computation.

The AR model is regarded as a dynamic system. A specific state-space representation for a univariate

AR(p) process can be written as [25]:

#
ξn`1 “ Fξn ` Γεn

xn “ Hξn ` εn
(15)

where:

F “

»
——————–

´φ1 1 0 ¨ ¨ ¨ 0

´φ2 0 1 ¨ ¨ ¨ 0
...

...
... ¨ ¨ ¨ 0

´φp´1 0 0 ¨ ¨ ¨ 1

´φp 0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffifl

ppˆpq

(16)

Γ “
”

´φ1 ´φ2 ¨ ¨ ¨ ´φp´1 ´φp

ıT
ppˆ1q

(17)

and:

H “
”
1 0 ¨ ¨ ¨ 0

ı
p1ˆpq

(18)

The coefficient polynomials of xn and εn are Φ pq´1q and one, respectively. Since they are relative

prime polynomials (or coprime), i.e., the transfer function is irreducible, the system of the AR model is a

joint controllable and observable discrete linear stochastic system [28]. Thus, there exists a steady-state

Kalman predictor: #
ξ̂n`1|n “ F ξ̂n|n´1 ` Ken

xn “ Hξ̂n|n´1 ` en
(19)

Since both εn and en are the innovation processes of xn, they are equal [27]:

en “ εn (20)

By comparing Equation (15) with Equation (19), we have:

#
ξn “ ξ̂n|n´1

K “ Γ
(21)

Therefore, the one-step steady-state Kalman predictor can be derived as [28]:

x̂n`1|n “ Hξ̂n`1|n “ xn`1 ´ εn`1

“ xn`1 ´ Φ
`
q´1

˘
xn`1 “ ´

pÿ

l“1

φlxn´l`1

(22)
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Similarly, the k-step steady-state Kalman predictor can be presented as:

#
ξ̂n`k|n “ F ξ̂n`k´1|n´1 ` F k´1Γεn

x̂n`k|n “ Hξ̂n`k|n

(23)

Here, define: #
Fk´1Γ “

“
gk0, gk1, ¨ ¨ ¨ , gkp´1

‰T

Gk

`
q´1

˘
“ gk0 ` gk1q

´1 ` ¨ ¨ ¨ ` gkp´1
q´pp´1q

(24)

Then, we can obtain:

Φ
`
q´1

˘
x̂n`k|n “ Gk

`
q´1

˘
εn (25)

and that is,

x̂n`k|n “ Gk

`
q´1

˘
xn “

p´1ÿ

l“0

gklxn´l (26)

Analogously, the k-step backward extrapolation formula can be given by:

x̂n´k|n “
p´1ÿ

l“0

g˚
kl
xn`l (27)

where the superscript “˚” denotes the complex conjugate operator. To guarantee reasonable and effective

extrapolations, the step-size k should satisfy:

#
LG ´ No ` k ě 0

N ` LG ´ 1 ´ k ď N ´ 1
ñ LG ď k ď No ´ LG (28)

In order to evaluate the residual filtering error of the proposed filtering strategy, we derive the mean

square error (MSE) in Appendix A1.

2.4. Adaptive Information Criteria for AR Order Determination

Given the impulse response of an analysis filter and AR coefficients, we can directly calculate MSE

by Equations (A2) and (A10). The precision of AR coefficient estimation is concerned with AR order.

Consequently, the filtering error at different AR orders can be evaluated with the preceding formulas;

conversely, the calculation of MSE can be used for order determination.

AIC and BIC are two common information criteria, whose purpose is to find a model with sufficient

goodness of fit and a minimum number of free parameters. In terms of the maximum likelihood estimate

σ̂2
p , we can denote AIC and BIC as [26]:

min
p

AIC “ log
`
σ̂2
p

˘
`

2 pp ` 1q

N
(29)

min
p

BIC “ log
`
σ̂2
p

˘
`

p logN

N
(30)

As explained in [29], due to the lack of samples, both criteria encounter the risk of overfitting, where

the selected order will be larger than the truth order. In particular, AIC has the nonzero overfitting

probability as the sample number tends to infinity. Theoretically, both criteria consist of two terms: the



Sensors 2015, 15 118

first term involves MSE, and it decreases with the increment of the order p; the other term is a penalty that

is an increasing function of p. The preferred model order is the one with the lowest AIC or BIC value.

As shown in Figure 2a, the objective function curve ČS1P1E1 reaches its minimum value at the point

P1, which gives the correct order p. However, sometimes, both criteria may fail to determine available

orders, and those failures are often related to inadequate penalties. Figure 2b illustrates a representative

case. Since the change of the objective function instantly slows down as the order exceeds p, the point

P2 is the preferred point for order determination. However, the penalty strength is insufficient, so that the

objective function is still falling after P2. To handle this situation, we propose an adaptive mechanism to

adaptively adjust the penalty strength. A geometric interpretation is depicted in Figure 2b. We assume

that the order interval for computation consists of the correct order. Then, the ray
ÝÝÑ
S2E2 forms the X2 axis,

while the ray
ÝÝÝÑ
O2Y2 forms the Y2 axis perpendicular to the ray

ÝÝÑ
S2E2 throughout the intersection O2 of

the ray
ÝÝÑ
S2E2 and the objective function axis. Under the new coordination system X2O2Y2, the minimum

point P2 of the curve ČS2P2E2 can help to determine the correct order. Meanwhile, this modification has

no impact on the case that the criterion works well (see Figure 2a).

P1

order

X1

O

o
b
je

c
ti
v
e
 f
u
n
c
ti
o

n

E1

S1

O1

Y1

p

(a)

P2

order
X2

O

o
b
je

c
ti
v
e
 f
u
n
c
ti
o

n

E2

S2

O2

Y2

p

(b)

Figure 2. Geometric interpretation for adaptive Akaike information criterion (AAIC) and

adaptive Bayesian information criterion (ABIC): the solid curves ČS1P1E1 and ČS2P2E2 draw

objective function values for AIC or BIC. The preferred orders are located at the point P1

and P2, respectively. (a) The case that the criterion (AIC or BIC) successfully determines the

correct order, and (b) the case that the criterion fails due to the inadequate penalty strength.

Under the new coordination system X2O2Y2, the point P2 becomes the minimum point of

the curve, and the correct order is retrieved.

Therefore, the adaptive AIC (AAIC) based on MSE of the residual filtering error can be derived as:
#

min
p

AAIC “ log
`
σ̂2
p

˘
` 2

N
ppα ` 1q

s.t. AAIC ppsq “ AAIC ppeq
(31)

where ps and pe denote the start point and the end point of the computing order interval, respectively. If

ps “ 1, the adaptive parameter α can be given by:

α “ logpe

„
N

2
log

ˆ
σ̂2
1

σ̂2
pe

˙
` 1


(32)
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Analogously, the adaptive BIC (ABIC) can be represented as:
$
&
%

min
p

ABIC “ log
`
σ̂2
p

˘
` pβ logN

N

β “ logpe

”
N

logN
log

´
σ̂2

1

σ̂2
pe

¯
` 1

ı (33)

3. Implementation of SDSE

In this section, we discuss the implementation details of SDSE based on the proposed filtering

strategy. In particular, equiripple FIR filters are used as the analysis filters for their advantageous

features. To suppress spectral overlap and improve spectral precision in practice, we introduce a

mosaicking operation for sub-band spectra and discuss the compensation of the residual error of the

composite spectrum. After that, we summarize the entire algorithm and analyze the computational

complexity.

3.1. Properties and Design of Equiripple FIR Filters

Besides the advantages of FIR filters, i.e., exact linear phase response and inherent stabilization,

equiripple FIR filters have an explicitly specified transition width and passband/stop-band ripples (see

Figure 3). As analysis filters, equiripple FIR filters can bring some important benefits, such as stop-band

attenuation with a fixed maximum, the explicitly specified width of the invalid part of the sub-band

spectrum (which corresponds to the transition-band spectrum) and a limited maximum deviation of the

valid part of the sub-band spectrum (which corresponds to the passband spectrum). As shown in Figure 3,

the specifications of a typical equiripple FIR filter consist of the passband edge ωp, stop-band edge ωs and

maximum error in passband and stop-band δp, δs, respectively. The approximate relationship between

the optimal filter length and other parameters developed by Kaiser [11] is:

Nf «
´20log10

`a
δpδs

˘
´ 13

14.6∆f
` 1 (34)

where ∆f denotes the width of the transition-band,

∆f “
ωs ´ ωp

2π
(35)

The maximum passband variation and the minimum stop-band attenuation in decibels are defined as:

Ap “ 20log10

ˆ
1 ` δp

1 ´ δp

˙
dB (36)

and:

As “ ´20log10 pδsq dB (37)

respectively.
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Figure 3. Magnitude response and design parameters of an equiripple low-pass FIR filter.

When the specification of a filter is explicitly specified, we can complete the design with the

Parks–McClellan (PM) algorithm [30], since it is optimal with respect to the Chebyshev norm and results

in about 5 dB more attenuation than the windowed design algorithm [11].

3.2. Practical Consideration of Equiripple FIR Filters

Firstly, the equiripple low-pass FIR filter is combined with a preprocessing step—complex frequency

modulation—to form a passband filter for sub-band decomposition (see Figure 4).

Figure 4. Block diagram of the analysis filter.

Figure 5. Magnitude response of the analysis filter.

The magnitude response of the analysis filter is shown in Figure 5, where ωH and ωL denote the high

and the low edge of the stop-band, respectively. They satisfy:

ωH ´ ωL “ 2ωs (38)
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As long as As is large enough and the downsample rate M meets the condition:

M ě
2π

ωH ´ ωL

ñ M ě
π

ωs

(39)

frequency aliasing can be practically suppressed.

Secondly, due to the existence of the transition-band of each analysis filter, each sub-band spectrum

contains two invalid parts. The spectral estimations of these invalid parts lead to errors. Consequently,

according to [31], when mosaicking these sub-band spectral estimations into full-band, we should omit

these invalid parts of spectral estimations. This procedure is illustrated in Figure 6. Thus, the composite

full-band spectral estimation is practically immune to the spectral overlap.

Figure 6. Illustration of mosaicking the sub-band spectral estimations into a composite

spectrum. The sub-band spectral estimations are overlapped, while the composite full-band

spectrum is without overlap (the boxes with solid lines cover the spectral estimation of the

sub-bands; the boxes with dashed lines cover the valid spectral estimation).

Thirdly, due to the existence of passband ripples in equiripple FIR filters, there theoretically remains

a small error in sub-band spectral estimations. Generally, by adjusting the maximum passband variation,

we can limit the error to an allowable range. More precise spectral estimation necessitates compensation

for the residual error. Since the ripple curve for any given equiripple FIR filter can be accurately

measured, the compensation can be performed by weighting sub-band spectral estimations with the

measured ripple curve.

Finally, we focus on selecting appropriate filter parameters in SDSE, which can improve the

performance and reduce computational cost. The filter order should at least meet:

N ě max pLG, No ´ LGq (40)

The maximum stop-band attenuation should exceed the dynamic range of the signal to be analyzed.

Once the aforementioned conditions are satisfied, the shortest transition-width can be chosen by

Equation (34). Moreover, specific requirement will help to set the maximum passband variation.
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3.3. Computational Complexity of SDSE

Algorithm 1 Non-overlapping sub-band spectral estimation with the steady-state Kalman

predictor-based filtering strategy.

Input: The sequence txnuN´1

n“0 .

Parameters: The maximum passband variation Ap and the minimum stop-band attenuation As in

decibels; the sub-band number M .

Filter Design:

Set the stop-band edge ωs by Equation (39);

Set the passband edge ωp by Equations (34), (35), (36), (37) and (40);

Design the equiripple FIR filter by Parks–McClellan (PM) algorithm [30], and then, compute the

impulse response thnuNo

n“0 and the group delay LG.

AR Identification and Order Selection:

for pi “ ps to pe (usually set ps “ 1, pe ď N{2 ´ 1) do

Estimate coefficients tφiu
pi
i“1 of AR model by the forward and backward estimator, with O pNp2i q

flops;

Estimate the MSE σ̂2
pi

by (A10) and (A11), with O
´

N4
o

48
` 5

24
N3

o ` N2
o

6

¯
flops;

end for

Select an order p by Equation (31) or Equation (33), with O pNq flops.

Sequence Extrapolation:

Set the step-size k by Equation (28);

Calculate tgklu
p´1

l“0
by Equations (16), (17) and (24), with O

´
p2pqk´1

¯
flops;

Implement forward and backward extrapolations by Equations (26) and (27), and obtain tx̂nuLG`N´1

n“LG´No
,

with OpNopq flops.

Sub-Band Spectral Estimation:

Set a rational factor M0 “
””

π
ωs

ıı
, where rrss denotes a rational approximation;

for i “ 1 to M do

Compute ωH and ωL by Equation (38) and ωH ` ωL “ p2i ´ 1q π{M ;

Perform pre-modulation and filtering for tx̂nuLG`N´1

n“LG´No
by Figure 4 and Equation (10), and the

computational complexity is in Op2 pN ` Noq log pN ` Noqq flops;

Decimate the sequence tx̂nuLG`N´1

n“LG´No
by a factor of M0, and obtain the sub-band sequence

 
x̂piq
n

(Q N
M0

U
´1

n“0 , where rs denotes the ceiling function;

Perform spectral analysis for the sub-band sequence
 
x̂piq
n

(Q N
M0

U
´1

n“0 , and denote the length of the

sub-band spectrum as Ls;

Compute the length of overlapped spectrum by
Q´

1
M0

´ ωp

π

¯
Ls

2

U
and omit the overlapped parts at

both the left and the right side of the sub-band spectrum.

end for

Mosaic the residual sub-band spectrums into an entire spectrum.

Output: The entire spectrum.
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As shown in Algorithm 1, we summarize SDSE with the proposed filtering strategy and give the

computational complexity of the major steps. First, the proposed strategy can greatly reduce the

computational burden. We take the commonly-used amplitude and phase estimation (APES) [32]

algorithm as an example. The full-band APES needs O pN2 logNq flops [33], while the computation

requirement is decreased to O

ˆ
M
´Q

N
M0

U¯2

log
´Q

N
M0

U¯˙
flops by SDSE with the proposed strategy.

Second, except the sub-band spectral estimation, the main computation requirement is induced by the

AR identification and the order selection. The computational complexity of this step is generally much

lower than that of the sub-band spectral estimation. In particular, if a proper order or a small enough

order interval is preselected before the AR identification, the computation of this step can be negligible.

4. Simulations and Analysis

In this section, both the feasibility and the effectiveness of the proposed strategy are evaluated by

typical numerical simulations, including FIR filtering and line spectral analysis of 1D or 2D sequences.

4.1. Filtering Analysis Using the Proposed Strategy

Suppose that the input sequence txnu is a mixed complex exponential sequence:
$
’’’’’’’&
’’’’’’’%

xn “ sp1q
n ` sp2q

n ` υn

sp1q
n “ exp p0.45jπnq

sp2q
n “

25ÿ

l“0

100 exp tp0.55 ` 0.035lq jπnu

n “ 0, 1, . . . , 127

(41)

where the measurement noise tυnu is a complex Gaussian process. All real parts and imaginary parts of

tυnu are independent and identically distributed (i.i.d.) zero-mean Gaussian distributions with variance

σ2, i.e., Re pυnq , Im pυnq „ N p0, σ2q. Our purpose is to non-distortedly extract the weak component

sp1q
n from xn or completely eliminate the strong component sp2q

n .

The equiripple half-band low-pass FIR filter is chosen for the extraction. The specifications of the

filter are:

Ap “ 1.4295 ˆ 10´3dB, As “ 81.6852dB,∆f “ 0.08 (42)

The length of the designed filter based on the given specifications is 119.

As shown in Figure 7a, the decreasing trend of the estimated residual error by the proposed strategy

is consistent with the real error. When the order exceeds 57, the decrease of the estimated filtering

error instantly slows down. Hence, the preferred order is 57. By comparison, due to the deficiency of

the penalty strength, none of AIC and BIC can provide the right order; whereas, based on the adaptive

penalty terms, both AAIC and ABIC get the right order 57 (see Figure 7b).

As shown in Figure 8b, the weak component sp1q
n is completely covered by the sidelobe of the

out-of-band strong component sp2q
n ; thus, recognizing the existence of the weak component from the

mixed spectrum is completely impossible. From the view of the magnitude response (see Figure 8a), the

filter has the nominal ability of eliminating the interference of the out-of-band strong components for
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the in-band weak component. Due to the existence of the convolution filtering error, we still cannot find

out the weak component from the convolution spectrum, as shown in Figure 8b. By contrast, once the

samples contaminated by the filtering error are omitted by Equation (4) from the filtered sequence, the

weak component reappears in the spectrum of the remaining samples (refer to the truncated spectrum in

Figure 8b). However, the truncated spectrum has a much wider main lobe than the original spectrum,

which means the spectral resolution suffers from a severe decrease. In order to simultaneously maintain

the resolution and filter out the interference, we apply the proposed filtering strategy to handle the case.

As shown in Figure 8c, based on the proposed strategy, the restored spectrum for the noiseless sequence

closely coincides with the truth weak spectrum in shape, especially retaining the spectral resolution. In

addition, even when the signal-to-noise (SNR) of sp1q
n is low to ´3 dB (when σ2 “ 1), the recovery is

still effective (see the magnified details of Figure 8c).
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Figure 7. Mean square error of filtering and order selection: (a) quantitative comparison of

the filtering error by convolution filtering and the proposed filtering; (b) comparison of the

information criteria, including AIC, BIC, AAIC and ABIC.
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Figure 8. Quantitative comparison of filtering results: (a) magnitude response of the

designed equiripple finite impulse response (FIR) half-band filter; (b) Fourier spectra of

the mixed sequence, the truth weak component, the convolved sequence and the truncated

sequence with 10 samples; (c) Fourier spectra of the truth weak component; the restored

results by the proposed filtering strategy when the mixed sequence is free of noise or

contaminated by noise (SNR = ´3 dB).
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4.2. Line Spectral Analysis Using 1-D Signals

A complex exponential model can be mathematically represented as:
$
’’’’’’’&
’’’’’’’%

xn “ sp1q
n ` sp2q

n ` υn

sp1q
n “

5ÿ

k“1

αk exp rj pωkn ` φkqs

sp2q
n “

16ÿ

i“0

100
!

exp
”
j
´
ω

p`q
i n ` φ

p`q
i

¯ı
` exp

”
j
´
ω

p´q
i n ` φ

p´q
i

¯ı )
(43)

where:

α1 “ α3 “ α5 “ 5, α2 “ α4 “ 1

ω1 “ ´0.075π, ω2 “ ´0.03125π, ω3 “ 0.0125πω4 “ 0.05625π

ω5 “ 0.1π, ω
p`q
i “ p0.15 ` 0.05iq π, ω

p´q
i “ ´ p0.15 ` 0.05iq π

and:

n “ 0, 1, ¨ ¨ ¨ , N ´ 1;N “ 128

tυnu is a real-value sequence of i.i.d. zero-mean Gaussian random variables with variance σ2 “ 1.5811,

i.e., υn „ N p0, σ2q. φk, φ`
i and φ´

i are i.i.d. uniform random variables on the interval from zero to 2π,

i.e., φk, φ
p`q
i , φ

p´q
i „ U r0, 2πq.

In this case, we can get each component’s SNR of sp1q
n :

SNR1 “ SNR3 “ SNR5 “ 5dB, SNR2 “ SNR4 “ ´2dB

We decompose the mixed-signal xn into four sub-bands using the proposed method with the filter

parameter set as:

Ap “ 0.01dB, As “ 60dB,∆f “ 0.05 (44)

The sub-band, whose radian frequency is within r´0.125π , `0.125πq, is used for frequency

estimation. Furthermore, we estimate the frequencies of complex sinusoids of sp1q
n that are contained

in both mixed-signal xn and the decomposed sub-band signal, via MUSIC, ESPRIT [34,35] and

SELF-SVD [15] algorithms (see Table 1). As shown in Table 1, we analyze the performance based

on the Monte Carlo method. Compared with ESPRIT, SELF-SVD in full-band spectral estimation

suffers from obvious performance degradations or even failures. Although SELF-SVD can theoretically

attenuate the out-of-band components for the in-band frequency estimations, the ability of attenuation is

not always sufficient, especially when the power of the out-of-band components are much stronger than

that of the in-band components or the SNR is relatively low. Instead of performing the SVD method

in the entire frequency domain as ESPRIT, SELF-SVD just performs it in the frequency interval of

interest. Obviously, the remaining out-of-band interferences will be treated as in-band components,

so that the frequency estimation with SELF-SVD sometimes fails. In the experiment, the power ratio

of the out-of-band components to the in-band components ω2 and ω4 is up to 10,000 times. As a

result, the corresponding frequency estimation with SELF-SVD fails to work. When we eliminate the

out-of-band interferences with our method, the estimation of SELF-SVD for the residual signal exhibits

similar performance as ESPRIT. In addition, MSEs of MUSIC and ESPRIT indicate that the frequency

estimation in the sub-band is much more accurate than that in the full-band.
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Table 1. Comparison of frequency estimation in full-band and sub-bands.

Means and MSEs Full-band Sub-band

of Estimating Frequencies MUSIC ESPRIT SELF-SVD MUSIC ESPRIT SELF-SVD

ω̄1 pω1 “ ´0.07500πq –0.0750π –0.0750π –0.0790π –0.0749π –0.0749π –0.0750π

ω̄2 pω2 “ ´0.03125πq –0.0309π –0.0309π „ –0.0308π –0.0313π –0.0308π

ω̄3 pω3 “ 0.01250πq 0.0125π 0.0125π 0.0175π 0.0123π 0.0123π 0.0126π

ω̄4 pω4 “ 0.05625πq 0.0572π 0.0572π „ 0.0555π 0.0557π 0.0555π

ω̄5 pω5 “ 0.10000πq 0.1000π 0.1000π 0.1027π 0.1000π 0.1000π 0.1000π

σ̂
2
ω̄1

ˆ 10
5 0.0072 0.0072 1.8126 0.0057 0.0058 0.0044

σ̂
2

ω̄2
ˆ 10

5 1.6462 1.6462 „ 0.1662 0.1259 0.1816

σ̂
2
ω̄3

ˆ 10
5 0.0125 0.0125 2.8847 0.0081 0.0074 0.0060

σ̂
2

ω̄4
ˆ 10

5 3.0443 3.0443 „ 0.1729 0.1199 0.1775

σ̂
2
ω̄5

ˆ 10
5 0.0360 0.0360 0.7379 0.0049 0.0041 0.0046

“„” denotes meaningless estimates.

(Monte Carlo analysis: 100 runs). SELF-SVD, singular value decomposition-based method in a selected frequency band.

4.3. Line Spectral Analysis Using 2D signals

Let Ck pk “ 1, 2, ¨ ¨ ¨ , Kq be a series of random integers with unique values generated from a uniform

discrete distribution on r1, 1024 ˆ 1024s. We define two sets of nonnegative integers as:

#
pk “

X
Ck

1024

\

qk “ mod pCk, 1024q
k “ 1, 2, ¨ ¨ ¨ , K (45)

where t¨u rounds a number to the nearest integer toward zero, and mod p¨q is the modulo operator.

The 2D signal model can be expressed as:

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

xn1,n2
“ sp1q

n1,n2
` sp2q

n1,n2
` υn1,n2

sp1q
n1,n2

“
Kř
k“1

exp
”
j2π

´
n1pk
4N1

` n2qk
4N2

¯
` jφk

ı

sp2q
n1,n2

“
16ř

l1“0

1, 000

$
&
%

exp
”
j2π

´
118.5n1

N1
` p95.5`4l1qn2

N2

¯
` jφ

p1q
l1

ı

` exp
”
j2π

´
54.5n1

N1

` p95.5`4l1qn2

N2

¯
` jφ

p2q
l1

ı
,
.
-

`
15ř

l2“1

1, 000

$
&
%

exp
”
j2π

´
p54.5`4l2qn1

N1
` 95.5n2

N2

¯
` jφ

p1q
l2

ı

` exp
”
j2π

´
p54.5`4l2qn1

N1
` 159.5n2

N2

¯
` jφ

p2q
l2

ı
,
.
-

(46)

where:

n1 “ 0, 1, ¨ ¨ ¨ , N1 ´ 1;n2 “ 0, 1, ¨ ¨ ¨ , N2 ´ 1

and:

N1 “ N2 “ 256, K “ 8, 192

tυn1,n2
u is a real-value sequence following υn1,n2

„ N p0, σ2q with σ2 “ 0.005. φk, φ
p1q
l1
, φ

p2q
l1
, φ

p1q
l2
, φ

p2q
l2

are uniform random variables on the interval from zero to 2π, i.e., φk, φp1q
l1

, φp2q
l1

, φp1q
l2

, φp2q
l2

„ U r0, 2πq.

The spectrum of this 2D sequence is shown in Figure 9. Since the magnitude of sp2q
n1,n2

is 60 dB greater

than that of sp1q
n1,n2

, the sidelobe of the former significantly affects the spectral estimation of the latter.
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This affect is especially more severe for the components around sp1q
n1,n2

. The region inside the red pane is

used to verify the performance of the proposed method.

Figure 9. Actual magnitude spectrum of the 2D signal (the black dot corresponds to sp1q
n1,n2

:

0 dB; the rounded blue spot ‚ corresponds to sp2q
n1,n2

: 60 dB; the red pane covers the region to

be analyzed).

The parameters of the analysis filter are selected as:

Ap “ 0.2 dB, As “ 80 dB, ∆f “ 0.05 (47)

The comparison of Figure 10a and 10c indicates that the Fourier spectrum of sp1q
n1,n2

is severely affected

by sp2q
n1,n2

. By contrast, the result shown in Figure 10b seems to be almost exactly the same as the desired

result shown in Figure 10c. This decomposition result verifies the effectiveness of the proposed method.

To further testify the performance of our method, we select the APES [32] and the iterative adaptive

approach (IAA) [36,37] for spectral estimation. Since the ideal frequency domain filters suffer from

energy leakage and/or frequency aliasing problems, the APES result shown in Figure 10c is somewhat

blurred. By contrast, the APES result of the decomposed sub-band based on the proposed strategy (see

Figure 10d) is quite similar to the actual spectrum (see Figure 10e). Theoretically, the IAA is superior

to the APES. However, as shown in Figure 10g, it is even more likely than the APES to suffer from

out-of-band interferences. From the view of the sub-band IAA spectrum (see Figure 10h), most of

the interferences are eliminated, while the remaining filtering error still has impacts on the spectrum.

Thus, the spectral estimation experiment reveals that the sub-band decomposition based on the proposed

method can provide relatively ideal performance; whereas the developed method for extrapolation is

imperfect, so it can affect the performance of the IAA algorithm.

In addition, a simulated single-polarized SAR image of an airplane based on the physical and optical

model is processed via the APES. The computation time of full-band APES (refer to Figure 11a) is
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26.85 h, while the time of sub-band APES (refer to Figure 11b) is just 0.84 h. Obviously, the two

imaging results only have tiny differences, which are hardly recognized.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10. Sub-band decomposition and spectral estimation within the analyzed region: (a)

the Fourier spectrum of xn1,n2
; (b) the Fourier spectrum of decomposed sub-band signal

based on our method; (c) the Fourier spectrum of sp1q
n1,n2

; (d) the amplitude and phase

estimation (APES) result of (a) corresponding to the ideal frequency domain filters-based

sub-band decomposition; (e) the APES result of (b); (f) the actual spectrum; (g) the iterative

adaptive approach (IAA) result of (a); (h) the IAA result of (b).
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(a) (b)

Figure 11. Comparison between full-band (a) and sub-band (b) APES images: the imaging

for (a) costs 26.85 h, while for (b), it is 0.84 h.

5. Conclusion

This paper has investigated the problem of suppressing spectral overlap in sub-band spectral

estimation. The spectral overlap phenomenon is originated from the non-ideal behavior of the analysis

filtering, i.e., the filtering error. The error formation in convolution filtering was therefore discussed,

based on which an extrapolation-based filtering strategy was proposed to greatly suppress spectral

overlap. Several classical theories, including AR identification, Kalman prediction and the equiripple

FIR filtering technique, are integrated into the strategy for linearly-optimal extrapolation. To resolve the

“overfitting” in order determination with AIC and BIC, we modified the penalty terms for both criteria.

The improved criteria adaptively adjust the penalty strength and avoid “overfitting” to some extent. Both

1D and 2D complex exponential signals are utilized to validate the performance of the proposed method.

Moreover, we employed SAR image formation for a single-polarized SAR data, simulated based on

electromagnetic theory, to testify the efficiency of our method. Future research will focus on developing

more sophisticated methods for the problem of extrapolation, with which we can avoid model order

determination and further improve the extrapolation precision.
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Appendix

A1. Residual Filtering Error Analysis

A stationary ARppq process can be represented as:

xn “
8ÿ

l“0

αlεn´l (A1)

where the coefficient series tαlu meets mean square convergence and can be calculated recursively [28]:
$
&
%

αl “ ´φ1αl´1 ´ ¨ ¨ ¨ ´ φpαl´p “ ´
minpp,lqř

i“1

φiαl´i

α0“1, αl “ 0 pl ă 0q

(A2)

Then k-step prediction formula in an alternative form is:

x̂n|n´k “
8ÿ

l“k

αlεn´l (A3)

The prediction error is xn ´ x̂n|n´k “
k´1ř
l“0

αlεn´l, and this mean that the variance and covariance are:

E
 
xn ´ x̂n|n´k

(
“ 0 (A4)

E

!ˇ̌
xn ´ x̂n|n´k

ˇ̌2)
“ σ2

ε

k´1ÿ

l“0

|αl|
2 (A5)

E
 `
xn1

´ x̂n1|n1´k

˘ `
xn2

´ x̂n2|n2´k

˘˚(
“

$
&
%

σ2
ε

ř
pl1,l2qPΛ

αl1αl2
˚ |n1 ´ n2| ď k ´ 1

0 otherwise
(A6)

respectively, where the set is:

Λ “ tpl1, l2q| l1 ´ l2 “ n1 ´ n2, 0 ď l1, l2 ď k ´ 1u

We define the desired output as ỹn and by analogy to Equation (11), we define its associated vector as:

ỹ “ rỹLG
, ỹLG`1, . . . , ỹLG`N´1s

T

pNˆ1q (A7)

where:

ỹ “ X̃h (A8)

and:

X̃ “

»
————–

xLG
xLG´1 ¨ ¨ ¨ xLG´No

xLG`1 xLG
¨ ¨ ¨ xLG´No`1

...
...

. . .
...

xLG`N´1 xLG`N´2 ¨ ¨ ¨ xLG`N´No´1

fi
ffiffiffiffifl

pNˆpNfqq

(A9)
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All elements of X̃ are truth samples, which are assumed to be known for derivation. Then, according

to (A6), we can derive the MSE as:

σ̂2 “
1

N

N`LG´1ÿ

n“LG

E
 

|ŷn ´ ỹn|2
(

“
1

N

No´1ÿ

n“LG

Noÿ

m1“ǹ 1

Noÿ

m2“ǹ 1

hm1
h˚
m2

E
 

px̂ń m1
´xń m1

q px̂ń m2
´xń m2

q˚
(

`
1

N

N L̀Ǵ 1ÿ

n“N

ń Nÿ

m1“0

ń Nÿ

m2“0

hm1
h˚
m2

E
 

px̂ń m1
´xń m1

q px̂ń m2
´xń m2

q˚(

“
σ2
ε

N

No´1ÿ

n“LG

ÿ

pm1,m2qPΛ1

hm1
h˚
m2

ÿ

pl1,l2qPΛp1q

αl1α
˚
l2

`
σ2
ε

N

N`LG´1ÿ

n“N

ÿ

pm1,m2qPΛ2

hm1
h˚
m2

ÿ

pl1,l2qPΛp2q

αl1α
˚
l2

(A10)

where:

Λ1 “

$
’&
’%

pm1, m2q

ˇ̌
ˇ̌
ˇ̌
ˇ

|m1 ´ m2| ď k ´ 1

n ` 1 ď m1, m2 ď No

LG ď n ď No ´ 1

,
/.
/-

Λp1q “

$
’&
’%

pl1, l2q

ˇ̌
ˇ̌
ˇ̌
ˇ

l1 ´ l2 “ m2 ´ m1

0 ď l1, l2 ď k ´ 1

pm1, m2q P Λ1

,
/.
/-

Λ2 “

$
’&
’%

pm1, m2q

ˇ̌
ˇ̌
ˇ̌
ˇ

|m1 ´ m2| ď k ´ 1

0 ď m1, m2 ď n ´ N

N ď n ď N ` LG ´ 1

,
/.
/-

Λp2q “

$
’&
’%

pl1, l2q

ˇ̌
ˇ̌
ˇ̌
ˇ

l1 ´ l2 “ m2 ´ m1

0 ď l1, l2 ď k ´ 1

pm1, m2q P Λ2

,
/.
/-

(A11)
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